ENGLISH

【海天学者】Hermitian geometry on resolvent set

发布时间:2016年12月16日 15:10 浏览量:

海天学者系列报告

报告题目:Hermitian geometry on resolvent set

报告人:Rongwei Yang(杨容伟)

报告时间:201715日(星期四) 上午 9:00-10:00

          2017112日(星期四)上午 9:00-10:00

报告地点:创新园大厦A1101

校内联系人:杨义新  电话:84708351-8135

报告内容:Spectral theory is a central ingredient in operator theory. But it is ineffective on quasi-nilpotent operator (whose spectrum is the single point 0). In a joint work with R. Douglas, new Hermitian metrics are defined on the resolvent set, and it is shown that the set of blow up rates of the metrics at 0 is a good measure of V's lattice of hyper-invariant subspaces. In addition, some familiar objects, such as eigenvector or inner function, can be rediscovered by this metric.

报告人简介:Rongwei Yang is a Professor of Mathematics at State University of New York at Albany, USA. His research interests include: multi-variable operator theory, several vomplex variables, Hermitian bundles, Kahler geometry on Stein domains, Chern-Weil homomorphism, cyclic cohomology.

                                                                                             437ccm必赢国际首页欢迎您

20161216

邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 437ccm必赢国际(中国·官方网站)-Webgame Platform2024      辽ICP备05001357号