ENGLISH

【中科院】Global Stability of Keller--Segel Systems in Critical Lebesgue Spaces

发布时间:2018年07月04日 15:17 浏览量:

学术报告

报告题目Global Stability of Keller--Segel Systems in Critical Lebesgue Spaces

 

报告人江杰  副研究员(中国科学院武汉物理与数学研究所)

 

报告时间:2018716日(星期一)15:00-16:00

报告地点:创新园大厦A1101

报告校内联系人:禹芳      联系电话84708351-8025

报告摘要:In this talk, we present some recent results on global stability for classical Keller—Segel system of chemotaxis. We will first talk about some related results for the Keller—Segel model, including global boundedness and blow-up results. Then we discuss the stability problem of Keller—Segel equation near spatially homogeneous steady solutions which is an open problem proposed in a recent survey by N. Bellomo et al. By establishing certain delicate L^p-L^q decay estimates for the associated linearized semigroup, we give a partially affirmative answer to the problem. More importantly, our results indicate that nontrivial globally bounded classical solution exists with any given large total mass provided the domain is sufficiently large. This is the first evidence with rigorous proof for the existence of nontrivial global classical solution with Large total mass.

                           

报告人简介:江杰,中国科学院武汉物理与数学研究所副研究员,2009年于复旦大学437ccm必赢国际首页欢迎您获得理学博士学位,师从郑宋穆教授。2009年到2011年在北京应用物理与计算数学研究所郭柏灵院士指导下从事博士后工作。主要针对多类非线性发展方程,如相场-流体方程组、趋化方程组等,考察整体解的存在唯一性、有界性、渐近性、平衡态以及无穷维动力系统的性质等。

 

 

 

437ccm必赢国际首页欢迎您数学科学学院

201875

邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 437ccm必赢国际(中国·官方网站)-Webgame Platform2024      辽ICP备05001357号