ENGLISH

【University of Minnesota】Virtual Betti numbers and virtual symplecticity of 4-dimensional mapping tori

发布时间:2018年07月16日 16:03 浏览量:

      

报告题目:Virtual Betti numbers and virtual symplecticity of 4-dimensional mapping tori

报告时间:201873015:30-16:30

报告地点:创新园大厦A1101报告厅

报告人:Professor Tian-Jun LiUniversity of Minnesota

报告摘要We compute the virtual first Betti numbers of 4-manifolds fibering over S^1 with prime 3-manifold fiber. As an application, we show that if such a manifold is symplectic with nonpositive Kodaira dimension, then the fiber itself is a sphere or torus bundle over S^1. In a different direction, we prove that if the 3-dimensional fiber of such a 4-manifold is virtually fibered then the 4-manifold is virtually symplectic unless its virtual first Betti number is 1. This is a joint work with Yi Ni. 

报告人简介:Tian-Jun Li, Professor,  Associate Head at School of Mathematics, University of Minnesota.

BS, Beijing University; PhD, Brandeis University; Postdoc, Yale University, Institute for Advanced Study; Assistant Professor,  Princeton University. 

Research interests:  four manifold theory and symplectic geometry. 

Main contributions:  Seiberg-Witten theory of smooth 4-manifolds with b+=1, Classifications of symplectic rational and ruled 4-manifolds and symplectic and Lagrangian surfaces, topology of symplectic Calabi-Yau surfaces, minimal genus problem, symplectic birational geometry in higher dimension. 

报告校内联系人:雷逢春 教授  联系电话:84706472

 

 

 

邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 437ccm必赢国际(中国·官方网站)-Webgame Platform2024      辽ICP备05001357号