ENGLISH

【俄罗斯新西伯利亚索伯列夫数学研究所】Invariants of spatial graphs and associated links

发布时间:2023年12月26日 14:05 浏览量:

报告题目:Invariants of spatial graphs and associated links

Andrei Vesnin 教授 (俄罗斯新西伯利亚索伯列夫数学研究所)

报告时间20231227日(星期三) 15:30-17:00

报告地点:海山楼(创新园大厦)A1101

校内联系人:雷逢春 教授     联系电话:84708360


报告摘要:We will discuss spatial embeddings of graphs into the 3-sphere. Since any cycle of a graph is embedding as a knot in the 3-sphere, the theory of spatial graphs arise as a generalization of the knot theory. Two spatial graphs are said to be equivalent if there is an ambient isotopy of the 3-sphere which transforms one spatial graph to another. As well as knots and links, spatial graphs can be studied from their diagrams. The Yamada polynomial is known as the most useful invariant of spatial graphs. Let K4 be the complete graph on 4 vertices. We will present a relation between normalized Yamada polynomials of a spatial K4-graph and its spatial subgraphs with Jones polynomial of the associated links.


报告人简介:Andrei Vesnin教授,俄罗斯科学院通讯院士、托木斯克大学教授,新西伯利亚国立大学教授、俄罗斯科学院Sobolev 数学研究所应用分析实验室主任,主要从事双曲流形等方面的研究工作,是代数拓扑领域国际知名专家,多次承担国家研究基金项目,多次组织主办学术会议。


邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 437ccm必赢国际(中国·官方网站)-Webgame Platform2024      辽ICP备05001357号