ENGLISH

【特拉华州立大学】The Haar Wavelet Analysis of Matrices and its Applications

发布时间:2019年05月08日 16:41 浏览量:

报告题目The Haar Wavelet Analysis of Matrices and its Applications

报告人:施锡泉 教授

报告时间510日(周五)下午1530-1700

报告地点创新园大厦A1101

报告联系人:雷逢春  教授    联系电话:84708360


报告摘要

It is well known that Fourier analysis or wavelet analysis is a very powerful and useful tool for a function since they convert time-domain problems into frequency-domain problems. Does it has similar tools for a matrix? By pairing a matrix to a piecewise function, a Haar-like wavelet is used to set up a similar tool for matrix analyzing, resulting in new methods for matrix approximation and orthogonal decomposition.  By using our method, one can approximate a matrix by matrices with different orders. Our method also results in a new matrix orthogonal decomposition, reproducing Haar transformation for matrices with orders of powers of two. The computational complexity of the new orthogonal decomposition is linear. That is, for an $m\times n$ matrix, the computational complexity  is $O(mn)$. In addition, when the method is applied to $k$-means clustering, one can obtain that $k$-means clustering can be equivalent converted to the problem of finding a  best approximation solution of a function. In fact, the results in this paper could be applied to any matrix related problems. In addition, one can also employee other wavelet transformations and Fourier transformation to obtain similar results.


报告人简介:施锡泉,现任特拉华州立大学(Delaware State University)终身教授。曾于1992年至2001年任职437ccm必赢国际首页欢迎您,历任副教授、教授和博士导师之职。获得荣誉包括:德国洪堡科研基金(Alexander von Humboldt-Stiftung)、霍英东高校青年教师研究基金、教育部(原国家教委)科技进步二等奖,大连市十大杰出科技青年等。施锡泉博士的研究方向包括计算几何、多元样条、特殊函数等,已发表论文90余篇

    欢迎师生踊跃参加

 

 

437ccm必赢国际首页欢迎您

201958

 

邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 437ccm必赢国际(中国·官方网站)-Webgame Platform2024      辽ICP备05001357号